https://scholar.google.com/citations?user=0P48E8gAAAAJ&hl=en




Submitted: 
  1. Slow manifold analysis of accelerated gradient methods
    Farazmand M.
    Submitted, 2018

  2. Are extreme dissipation events predictable in turbulent fluid flows?
    Blonigan P., Farazmand M., Sapsis T.
    Submitted, 2018

  3. Extreme Events: Mechanisms and Prediction
    Farazmand M., Sapsis T.
    Submitted, 2018

Published:
  1. Variational Lagrangian formulation of the Euler equations for incompressible flow: A simple derivation
    Farazmand M., Serra M. 
    arXiv:1807.02726, 2018

  2. Physics-based probing and prediction of extreme events
    Farazmand M., Sapsis T.

    SIAM News, Vol. 51, January 2018

  3. A variational approach to probing extreme events in turbulent dynamical systems
    Farazmand M., Sapsis T. 
    Science Advances, vol. 3, pp. 1701533, 2017
    Featured in MIT News [Link] and other news outlets [Link]

  4. Relative periodic orbits form the backbone of turbulent pipe flow
    Budanur N. B., Short K. Y., Farazmand M., Willis A. P., Cvitanović P.
    J. Fluid Mech., vol. 833, pp. 274-301, 2017

  5. Optimal initial condition of passive tracers for their maximal mixing in finite time
    Farazmand M.
    Phys. Rev. Fluids, vol. 2, pp. 054601, 2017

  6. Reduced-order prediction of rogue waves in two-dimensional deep-water waves
    Farazmand M., Sapsis T.
    J. Comput. Phys., vol. 340, pp. 418-434, 2017

  7. Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents
    Babaee H.Farazmand M., Haller G., Sapsis T.
    Chaos, vol. 27, pp. 063103, 2017

  8. A critical comparison of Lagrangian methods for coherent structure detection
    Hadjighasem A., Farazmand M., Blazevski D., Froyland G., Haller G.
    Chaos, vol. 27, pp. 053104, 2017


  9. Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems
    Farazmand M., Sapsis T.
    Phys. Rev. E, vol. 94, pp. 032212, 2016
    Featured on the journal's kaleidoscope [Link]

  10. An adjoint-based approach for finding invariant solutions of Navier-Stokes equations
    Farazmand M.
    J. Fluid Mech., 

    vol. 795, pp. 278-312, 2016


    A tutorial on the adjoint method is available here.

  11. Kinematics of fluid particles on the sea surface: Hamiltonian theory
    Fedele F., Chandre C., Farazmand M. 
    J. Fluid Mech., vol. 801, pp. 260-288, 2016

  12. Defining coherent vortices objectively from the vorticity
    Haller G., Hadjighasem A., Farazmand M., Huhn F.
    J. Fluid Mech., vol. 795, pp. 136-173, 2016

  13. Polar rotation angle identifies elliptic islands in unsteady dynamical systems
    Farazmand M., Haller G.
    Physica D, vol. 315, pp. 1-12, 2016

  14. Asymptotic Dynamics of Inertial particles with memory
    Langlois G. P., Farazmand M., Haller G.
    J Nonlinear Sci, vol. 25, pp.1225-1255, 2015
  15. Attraction-based computation of hyperbolic Lagrangian coherent structures
    Karrasch D., Farazmand M., Haller G.,
    J. Comp. Dyn., vol. 2, No. 1, pp. 83-93, 2015

  16. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
    Beron-Vera F. J., Olascoaga J. M., Haller G., Farazmand M., Trinanes J., Wang Y.
    Chaos, vol. 25, pp. 087412, 2015

  17. The Maxey-Riley Equation: Existence, Uniqueness and Regularity of Solutions
    Farazmand M., Haller G. 
    J. Nonlinear Analysis: Real World Applications, vol. 22, pp. 98-106, 2015

  18. Shearless transport barriers in unsteady two-dimensional flows and maps
    Farazmand M., Blazevski D., Haller G. 
    Physica D, vol. 278-279, pp. 44-57, 2014

  19. Attracting and repelling Lagrangian coherent structures from a single computation
    Farazmand M., Haller G.
    Chaos, vol. 23, pp. 023101, 2013
    Editor's pick for the best papers of 2013 [Link]

  20. Detecting invariant manifolds, attractors and generalized KAM tori in aperiodically forced mechanical systems
    Hadjighasem A., Farazmand M., Haller G.
     
    Nonlinear Dynamics, vol. 73, pp. 689-704, 2013

  21. Computing Lagrangian coherent structures from their variational theory
    Farazmand M., Haller G. 
    Chaos, vol. 22, pp. 013128, 2012
    Editor-in-Chief's pick for the article of the year [Link]

  22. Erratum and addendum to "A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D 240 (2011) 574-598."
    Farazmand M., Haller G.
     
    Physica D, vol. 241, pp. 439-441, 2012

  23. Controlling the dual cascades of two-dimensional turbulence
    Farazmand M., Kevlahan N., Protas B. 
    J. Fluid Mech., vol. 668, pp. 202-222, 2011


Theses: