Publications

https://scholar.google.com/citations?user=0P48E8gAAAAJ&hl=en

Submitted:

  1. Evolution of nonlinear reduced-order solutions for PDEs with conserved quantities
    Anderson W., Farazmand M.
    Submitted, 2021

  2. Mitigating climate tipping points under various emission reduction and carbon capture scenarios
    Mendez A., Farazmand M.
    Submitted, 2021

Published:

  1. Mitigation of rare events in multistable systems driven by correlated noise
    Mamis K., Farazmand M.
    Phys. Rev. E, vol. 104, pp. 034201, 2021

  2. Data-driven prediction of multistable systems from sparse measurements
    Chu B., Farazmand M.
    Chaos, vol. 31, pp. 063118, 2021

  3. Multiscale analysis of accelerated gradient methods
    Farazmand M.
    SIAM Journal on Optimization, vol. 30, No. 3, pp. 2337- 2354, 2020

  4. Mitigation of tipping point transitions by time-delay feedback control
    Farazmand M.
    Chaos, vol. 30, pp. 013149, 2020
    Part of the Focus Issue on Rare Events in Complex Systems: Understanding and Prediction

  5. Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows
    Katsanoulis S., Farazmand M., Serra M., Haller G.
    Phys. Rev. Fluids, vol. 5, pp. 024701, 2020

  6. Closed-loop adaptive control of extreme events in a turbulent flow
    Farazmand M., Sapsis T.
    Phys. Rev. E, vol. 100, pp. 033110, 2019

  7. Extreme Events: Mechanisms and Prediction
    Farazmand M., Sapsis T.
    ASME Appl. Mech. Rev., vol. 71, pp. 050801, 2019
    Invited Review Article. A discussion of our review by Prof. Grigoriu and Wayne Uy is available here. Our closing comments are available here. [Journal Version]

  8. Are extreme dissipation events predictable in turbulent fluid flows?
    Blonigan P., Farazmand M., Sapsis T.
    Phys. Rev. Fluids, vol. 4, pp. 044606, 2019

  9. Surface waves enhance particle dispersion
    Farazmand M., Sapsis T.
    Fluids, vol. 4, article no. 55 , 2019
    Invited paper. Part of the special issue: Nonlinear Wave Hydrodynamics [video description]

  10. Variational Lagrangian formulation of the Euler equations for incompressible flow: A simple derivation
    Farazmand M., Serra M.
    arXiv:1807.02726, 2018

  11. Physics-based probing and prediction of extreme events
    Farazmand M., Sapsis T.
    SIAM News, vol. 51, January 2018

  12. A variational approach to probing extreme events in turbulent dynamical systems
    Farazmand M., Sapsis T.
    Science Advances, vol. 3, pp. 1701533, 2017
    Featured in MIT News [Link] and other news outlets [Link]

  13. Relative periodic orbits form the backbone of turbulent pipe flow
    Budanur N. B., Short K. Y., Farazmand M., Willis A. P., Cvitanović P.
    J. Fluid Mech., vol. 833, pp. 274-301, 2017

  14. Optimal initial condition of passive tracers for their maximal mixing in finite time
    Farazmand M.,
    Phys. Rev. Fluids, vol. 2, pp. 054601, 2017

  15. Reduced-order prediction of rogue waves in two-dimensional deep-water waves
    Farazmand M., Sapsis T.
    J. Comput. Phys., vol. 340, pp. 418-434, 2017

  16. Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents
    Babaee H., Farazmand M., Haller G., Sapsis T.
    Chaos, vol. 27, pp. 063103, 2017

  17. A critical comparison of Lagrangian methods for coherent structure detection
    Hadjighasem A., Farazmand M., Blazevski D., Froyland G., Haller G.
    Chaos, vol. 27, pp. 053104, 2017

  18. Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems
    Farazmand M., Sapsis T.
    Phys. Rev. E, vol. 94, pp. 032212, 2016
    Featured on the journal's kaleidoscope [Link]

  19. An adjoint-based approach for finding invariant solutions of Navier-Stokes equations
    Farazmand M.,
    J. Fluid Mech., vol. 795, pp. 278-312, 2016
    A tutorial on the adjoint method is available here.

  20. Kinematics of fluid particles on the sea surface: Hamiltonian theory
    Fedele F., Chandre C., Farazmand M.
    J. Fluid Mech., vol. 801, pp. 260-288, 2016

  21. Defining coherent vortices objectively from the vorticity
    Haller G., Hadjighasem A., Farazmand M., Huhn F.
    J. Fluid Mech., vol. 795, pp. 136-173, 2016

  22. Polar rotation angle identifies elliptic islands in unsteady dynamical systems
    Farazmand M., Haller G.
    Physica D, vol. 315, pp. 1-12, 2016

  23. Asymptotic Dynamics of Inertial particles with memory
    Langlois G. P., Farazmand M., Haller G.
    J Nonlinear Sci, vol. 25, pp.1225-1255, 2015

  24. Attraction-based computation of hyperbolic Lagrangian coherent structures
    Karrasch D., Farazmand M., Haller G.
    J. Comp. Dyn., vol. 2, No. 1, pp. 83-93, 2015

  25. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
    Beron-Vera F. J., Olascoaga J. M., Haller G., Farazmand M., Trinanes J., Wang Y.
    Chaos, vol. 25, pp. 087412, 2015

  26. The Maxey-Riley Equation: Existence, Uniqueness and Regularity of Solutions
    Farazmand M., Haller G.
    J. Nonlinear Analysis: Real World Applications, vol. 22, pp. 98-106, 2015

  27. Shearless transport barriers in unsteady two-dimensional flows and maps
    Farazmand M., Blazevski D., Haller G.
    Physica D, vol. 278-279, pp. 44-57, 2014

  28. Attracting and repelling Lagrangian coherent structures from a single computation
    Farazmand M., Haller G.
    Chaos, vol. 23, pp. 023101, 2013
    Editor's pick for the best papers of 2013
    [Link]

  29. Detecting invariant manifolds, attractors and generalized KAM tori in aperiodically forced mechanical systems
    Hadjighasem A., Farazmand M., Haller G.
    Nonlinear Dynamics, vol. 73, pp. 689-704, 2013

  30. Computing Lagrangian coherent structures from their variational theory
    Farazmand M., Haller G.
    Chaos, vol. 22, pp. 013128, 2012
    Editor-in-Chief's pick for the article of the year [Link]

  31. Erratum and addendum to "A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D 240 (2011) 574-598"
    Farazmand M., Haller G.
    Physica D, vol. 241, pp. 439-441, 2012

  32. Controlling the dual cascades of two-dimensional turbulence
    Farazmand M., Kevlahan N., Protas B.
    J. Fluid Mech., vol. 668, pp. 202-222, 2011

Theses: