1. Tensor-based flow reconstruction from optimally located sensor measurements
    M. Farazmand, A. K. Saibaba,
    Submitted, 2023


  1. Stochastic compartmental models of COVID-19 pandemic must have temporally correlated uncertainties
    K. Mamis, M. Farazmand
    Proc. R
    oyal Soc. A, vol. 479, pp. 20220568, 2023
    Featured in NCSU News [Link]

  2. Quantifying rare events in spotting: How far do wildfires spread?
    A. Mendez, M. Farazmand
    Fire Safety Journal, vol. 132, pp. 103630, 2022
    Selected by the journal's Editor-in-Chief as a featured article [Link]

  3. Shape-morphing reduced-order models for nonlinear Schrodinger equations
    W. Anderson, M. Farazmand
    Nonlinear Dynamics, vol. 108, pp. 2889-2902, 2022.

  4. Model-assisted deep learning of rare extreme events from partial observations
    A. Asch, E. Brady, H. Gallardo, J. Hood, B. Chu, M. Farazmand
    Chaos, vol. 32, pp. 043112, 2022

  5. Evolution of nonlinear reduced-order solutions for PDEs with conserved quantities
    W. Anderson, M. Farazmand
    SIAM J. on Scientific Computing, vol. 44, pp. A176-A197, 2022
    Awarded the 2022 SIAM Student Paper Prize [Link]

  6. Investigating climate tipping points under various emission reduction and carbon capture scenarios with a stochastic climate model
    A. Mendez, M. Farazmand
    Proc. Roy. Soc. A,
    vol. 477, pp. 20210697, 2021
    Featured in NCSU News [Link] and other news outlets [Link]

  7. Mitigation of rare events in multistable systems driven by correlated noise
    K. Mamis, M. Farazmand
    Phys. Rev. E, vol. 104, pp. 034201, 2021

  8. Data-driven prediction of multistable systems from sparse measurements
    B. Chu, M. Farazmand
    Chaos, vol. 31, pp. 063118, 2021

  9. Multiscale analysis of accelerated gradient methods
    M. Farazmand
    SIAM Journal on Optimization, vol. 30, No. 3, pp. 2337- 2354, 2020

  10. Mitigation of tipping point transitions by time-delay feedback control
    M. Farazmand
    Chaos, vol. 30, pp. 013149, 2020
    Part of the Focus Issue on Rare Events in Complex Systems: Understanding and Prediction

  11. Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows
    S. Katsanoulis, M. Farazmand, M. Serra, G. Haller
    Phys. Rev. Fluids, vol. 5, pp. 024701, 2020

  12. Closed-loop adaptive control of extreme events in a turbulent flow
    M. Farazmand, T. Sapsis
    Phys. Rev. E, vol. 100, pp. 033110, 2019

  13. Extreme Events: Mechanisms and Prediction
    M. Farazmand, T. Sapsis
    ASME Appl. Mech. Rev., vol. 71, pp. 050801, 2019
    Invited Review Article. A discussion of our review by Prof. Grigoriu and Wayne Uy is available here. Our closing comments are available here. [Journal Version]

  14. Are extreme dissipation events predictable in turbulent fluid flows?
    P. Blonigan, M. Farazmand, T. Sapsis
    Phys. Rev. Fluids, vol. 4, pp. 044606, 2019

  15. Surface waves enhance particle dispersion
    M. Farazmand, T. Sapsis
    Fluids, vol. 4, article no. 55 , 2019
    Invited paper. Part of the special issue: Nonlinear Wave Hydrodynamics [video description]

  16. Variational Lagrangian formulation of the Euler equations for incompressible flow: A simple derivation
    M. Farazmand, M. Serra
    arXiv:1807.02726, 2018

  17. Physics-based probing and prediction of extreme events
    M. Farazmand, T. Sapsis
    SIAM News, vol. 51, January 2018

  18. A variational approach to probing extreme events in turbulent dynamical systems
    M. Farazmand, T. Sapsis
    Science Advances, vol. 3, pp. 1701533, 2017
    Featured in MIT News [Link] and other news outlets [Link]

  19. Relative periodic orbits form the backbone of turbulent pipe flow
    N. B. Budanur, K. Y. Short, M. Farazmand, A. P. Willis, P. Cvitanović
    J. Fluid Mech., vol. 833, pp. 274-301, 2017

  20. Optimal initial condition of passive tracers for their maximal mixing in finite time
    M. Farazmand,
    Phys. Rev. Fluids, vol. 2, pp. 054601, 2017

  21. Reduced-order prediction of rogue waves in two-dimensional deep-water waves
    M. Farazmand, T. Sapsis
    J. Comput. Phys., vol. 340, pp. 418-434, 2017

  22. Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents
    H. Babaee, M. Farazmand, G. Haller, T. Sapsis
    Chaos, vol. 27, pp. 063103, 2017

  23. A critical comparison of Lagrangian methods for coherent structure detection
    A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, G. Haller
    Chaos, vol. 27, pp. 053104, 2017

  24. Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems
    M. Farazmand, T. Sapsis
    Phys. Rev. E, vol. 94, pp. 032212, 2016
    Featured on the journal's kaleidoscope [Link]

  25. An adjoint-based approach for finding invariant solutions of Navier-Stokes equations
    Farazmand M.,
    J. Fluid Mech., vol. 795, pp. 278-312, 2016
    A tutorial on the adjoint method is available here.

  26. Kinematics of fluid particles on the sea surface: Hamiltonian theory
    Fedele F., Chandre C., Farazmand M.
    J. Fluid Mech., vol. 801, pp. 260-288, 2016

  27. Defining coherent vortices objectively from the vorticity
    Haller G., Hadjighasem A., Farazmand M., Huhn F.
    J. Fluid Mech., vol. 795, pp. 136-173, 2016

  28. Polar rotation angle identifies elliptic islands in unsteady dynamical systems
    Farazmand M., Haller G.
    Physica D, vol. 315, pp. 1-12, 2016

  29. Asymptotic Dynamics of Inertial particles with memory
    Langlois G. P., Farazmand M., Haller G.
    J Nonlinear Sci, vol. 25, pp.1225-1255, 2015

  30. Attraction-based computation of hyperbolic Lagrangian coherent structures
    Karrasch D., Farazmand M., Haller G.
    J. Comp. Dyn., vol. 2, No. 1, pp. 83-93, 2015

  31. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
    Beron-Vera F. J., Olascoaga J. M., Haller G., Farazmand M., Trinanes J., Wang Y.
    Chaos, vol. 25, pp. 087412, 2015

  32. The Maxey-Riley Equation: Existence, Uniqueness and Regularity of Solutions
    Farazmand M., Haller G.
    J. Nonlinear Analysis: Real World Applications, vol. 22, pp. 98-106, 2015

  33. Shearless transport barriers in unsteady two-dimensional flows and maps
    Farazmand M., Blazevski D., Haller G.
    Physica D, vol. 278-279, pp. 44-57, 2014

  34. Attracting and repelling Lagrangian coherent structures from a single computation
    Farazmand M., Haller G.
    Chaos, vol. 23, pp. 023101, 2013
    Editor's pick for the best papers of 2013

  35. Detecting invariant manifolds, attractors and generalized KAM tori in aperiodically forced mechanical systems
    Hadjighasem A., Farazmand M., Haller G.
    Nonlinear Dynamics, vol. 73, pp. 689-704, 2013

  36. Computing Lagrangian coherent structures from their variational theory
    Farazmand M., Haller G.
    Chaos, vol. 22, pp. 013128, 2012
    Editor-in-Chief's pick for the article of the year [Link]

  37. Erratum and addendum to "A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D 240 (2011) 574-598"
    Farazmand M., Haller G.
    Physica D, vol. 241, pp. 439-441, 2012

  38. Controlling the dual cascades of two-dimensional turbulence
    Farazmand M., Kevlahan N., Protas B.
    J. Fluid Mech., vol. 668, pp. 202-222, 2011